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Abstract 

Upcoming spacecraft plan  extensive  reuse of software components, t,o t,he extent 
that some systems will form product families of similar  or identical units (e.g.,  a fleet 
of spa.ceborne telescopes). Missions  such  as these must be demonstrably safe,  but the 
consequences of broad reuse are hard to evalua,te  from a software  safety perspective. 
This paper  reports experience  specifying an interferometer (telescope) subsystem as a 
product family and supplementing the specification  with results from a  hazards anal- 
ysis.  Lessons learned are discussed in three areas: (1) integration of hazards aaalysis 
with the product family approach; (2)  modeling  decisions tha,t have  safety  implica- 
t,ions (e.g., how to handle  neaa-commonalities,  esta,blishing a hierarchy of variabilities, 
and specifying  dependencies  among options); and ( 3 )  tracing the product family  re- 
quirements to  the design of the reusable components and to  the design of a specific 
product.  The product family approach was  effective at identifying. some latent safety 
requirements and in  validating the design of the reusable  software. The product family 
approach lacked an  adequate way to distinguish a,rchitectural variations from run-time 
variations in the model. 

1. Introduction 
Upcoming  spacecraft  plan  extensive  reuse of software  components, too the  ext'ent that some 
systems will form  product  families of similar  or  identical  unit,s (e.g., a fleet of spacehorne 
telescopes). hhsions such as  these  must  be  demonstra,bly  safe,  but  the  consequences of 
broa,d  reuse are hard t,o evaluat,e  from a, software  safety  perspective [l, 6, 13, 16, 191. This 
paper  reports  experience  specifying an interferometer  (telescope)  subsystem  as a product 
family,  performing a hazards  analysis to  enhance  its  software  requirements,  and  using  the 
requirments to evaluate  the design of a reusable  component. 

Fig. 1 shows an overview of an  interferometer.  An  interferometer is an  instrument, 
(roughly, a collection of telescopes) that, makes ca,reful mea,surenlents of the  locations of stars. 

*First# a.uthor's a.ddress is Dept. of Computer Science, Iowa Stmate University, Ames, IA 50011-1041. 
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Figure 1: Interferometer  System  Overview 

The  interferometer uses a  number of special  mirrors  to collect light  from  these  stars.  The 
collcct,ed light is combined  and  ma,de  to  “interfere.”  By  calculating  the  interference,  highly 
accurate  position  measurements  can  be  made.  The  output of a  set of small,  geographically 
distributed collecting instruments is t,hus used to  synthesize  the  performance of a single 
larger  instrument [la,  181 

Spxeborne  optical  interferometers  have  been identified  as a  critical  technology for many 
of NASA’s 21st century  missions to explore  the origins of stars  and galaxies and  study  other 
Earth-like  planets [14]. Among  the  spaceborne  interferometers  under  development  or  pro- 
posed for future  development  are  t,he  Spa.ceborne  Interferometry  Mission,  t’he New Millenium 
Separat,ed Spacecra.ft, Interferometer,  and  the  Terrestrial  Planet  Finder.  Anticipaked  launch 
dates  range  from 2001 to 2020 or  beyond.  Ground-based  interferometer  projects,  including 
the Keck Interferometry  Project,  are also underway [18]. 

One of the technological  challenges  involved  in  interferometers is the  very  high  precision 
needed to achieve  the  required  resolution. Light arrives  at  one of the  interferometer’s  mirrors 
sooner  than  at  the  other.  Prior  to  arrival  at  the  beam  combiner,  optical  path  delay is added 
to  the light by means of a  delay  line  component.  The  delay  line  compensa.tes for the difference 
in  time  between  when  starlight a.rrives at  the  mirrors [8, 9, 10, 11, la]. 

Anot,her  component, of the  interferometer,  the  fringe  tracker,  provides  constant  feedback 
to the  delay  line  software  regarding  resolution  to  guide  this  adjustment.  Due  to  their  criti- 
cality,  these  two  components,  the Delay Line software  and  the  Fringe  Tracker  software, were 
chosen  as  initial pieces for definition of the  interferometer  product  family. 
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Figure 2: Three  Phases of the  Product  Family  Application 

Fig. 2 shows the  three phaaes of the  product  family  approach as applied  to  the  interfer- 
ometer  software.  The  contributions  made  to  this app1ica)tion by the  product fa,mily a.pproach 
were (1) t80  provide a structured specification of both t,he  commonality  and  variability re- 
quirements, (2) to  aaalyze  the  product,  family  requirement,s  from  a sa.fety perspect,ive  and 
improve  them a.ccordingly, and ( 3 )  to  evaluate  the design of reusable  software  component,s 
by checking  whether  they satisfied the product  family  requirements.  Section 2 of the  paper 
describes  the first step,  the specification of the  product  family.  Section 3 discusses the second 
st,ep,  the  hazard  analysis of the  product family. Section 4 describes  the  result,s of the  third 
step, design  evaluation. 

Lessons leaned  are discussed  in  three  areas: 

1. 

2. 

3 .  

integrat,ion of hazards  analysis  with  the  product  family  approa,ch; 

modeling  decisions that have  safety  implications (e.g., how to  handle  near-commonalities, 
establishing a hierarchy of variabilities,  and  specifying  dependencies  among  options): 
and 

tracing  the  product fa,mily requirements  to  the  design of t,he reusable  components  and 
t,o t,he  design of a. specific product. 

The  product fa,mily a,pproa.ch proved effective a,t identifying  latent  safety  requirements  and 
in valida,ting  the  design of the  reusable  software.  The  product fa,mily approach  lacked  an 
adequate way t,o distinguish  architectural  variations  from  run-time va,ria,tions in  the  model. 
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2. Product Family Definition 
Organizationally, a group was already in  place to  facilitate reuse  among  the  interferometer 
projects  when  t,he  product  family work reported  here  began.  That  group was tasked  with 
ident)ifying  and  providing  reusable,  generic softwa,re components to the various  interferometer 
projects.  The  group  consisted of experienced  engineers  and  programmers,  led by  people  with 
extensive  backgrounds in  developing  interferometers. 

Their  development of the  reusable  software  components was evolutionary. It was strongly 
object-oriented,  with  each  iteration  providing  cleaner  interfaces  and  taking  advantage of ad- 
dit,ional  opportunities for a,bstraction  (class  inheritance).  The  documentation  they  produced 
was primarily  textual  description  and UML diagrams,  with  the  design  and  code  sometimes 
outstripping  the  document,a,tion.  The  available  documentation,  together  with  detailed  pre- 
sent,at,ions  during  aschit,ectural  reviews,  formed  the basis for the specifica.tion of the  product 
family  requirements. 

The  documentation  from  the reusa.ble  software components  group  emphasized  t,he  com- 
mon  features of the  interferometer  software,  since  this was their  deliverable.  The  product 
family  approach,  since it describes  both  the  common  and  the  distinct  features of the various 
systems,  provided a useful  safety check and  counterpoint  to  the  generic soft,ware development. 

Some of the  variations  among  the  interferometers were  discussed  in the  documentation 
of the  requirements for the  reusable softwa,re. Other  variations were gathered  from  exten- 
sive  web  pages describing  the  int,erferometers,  during review of the  initial  product  family 
specifications, as will be  discussed below, and  from  comments  during  the  a,rchitectural  re- 
view.  In  general,  the specific interferometer  projects  had  not  started t,o document  software 
requirements  at  this  early  stage  but,  where  such  documentation  existed,  it was consulted for 
additional  variations. 

In  developing  the  product  family  requirements,  the  process  described  in  the SPC guide- 
book was followed for  t,he  domain definition a,nd  domain  specification. [all. SPC recommends 
tha,t  product  family  requirements  be  expressed in  such  formats a,s structured,  informal  text; 
msertions;  or  formal  or  semi-form specifications. 

For the  domain  definition,  the  domain was  first  defined informally  as  the  Delay  Line  and 
Fringer  Tracker  subsystems of interferometers. A standard  terminology was then defined  in 
the  form of a, glossary. The glossary  included  terms  such aa “path  length”  and  “baseline 
vector” that  are used i n  the  description of the software  capabilities.  The  glossary was 
repeatedly  corrected  and  supplemented  throughout  the  application  in  response  to  additional 
input  and  updates.  One of the lessons learned  (discussed in  Sect’ion 5.2) was that  each  project 
ha.d a  slightly  different  vocabulary  and  slightly different  definitions  for some  standard  terms. 
Precise definit,ions  helped  uncover subtle  variations  among  the  projects’  interferometers. 

The  largest  part of the initia.1 effort was in what SPC calls “Esta.blish  domain  assump- 
tions.”  The  domain  assumptions  are  divided  into  commonality  assumptions  and  variability 
a,ssumptions.  Commonality  assumptions  are  characterisitics  shared by all the  systjems  in 
the  domain.  Variability  assumptions  are  characterisitics  not  shared  by  all  systems  in  the 
domain. 

Examples of commonality  assumptions a,re “[Delay Line]  receives closed loop  target  from 
Fringe Tra,cker for fine-tuning”  and  “Automatically  stops  dehy  line  [hardware]  when  end 
of t,ra.ck is rea.ched wit,h software  limit  featcure.”  Exa,mples of va,ria,bility assumptions  are 
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“The  baseline  vector  knowledge  accuracy  needed  can va,ry” and  “The  number of delay  lines 
can vary.” Forty  commonality  assumptions  and  twenty  variability  assumptions  were init,ially 
identified for the delay  line  and  fringe  tracker  components. As will be  discussed  below,  these 
numbers  changed as the specifications  were corrected  and  refined. 

The  data  items  needed  to  describe a. particular  system  in  this  product  family were iden- 
tified from  the  variabilities.  Each  variability identified above  had to  be  quantified by one  or 
more  parameters.  These  pa.rameters of variability  define  the ra,nge of customer  requirements 
and decisions that  must  be  made  to specify a particular  member of the  product  family  (i.e., 
a  particular  interferometer) [2 l ,  221. 

Ardis  and Weiss propose  the  inclusion of the following information for each  parameter of 
variability:  Parameter,  Binding, Variability, Default,  Domain, a.nd Comment,s [2, 31. This 
informa.t,ion  was specified for the delay  line  using an  automated  toolset, SCR* from  the Na,val 
R.esearch Laboratory,  with  the  parameters of variability  being  documented  as  monit,ored 
variables [7].  The use of this  toolset  provided  the  opportunity for later  automated  analysis. 
SCR* produces  table-based specificatlions  tha,t, are  easy  to r e d ,  update,  and  distribuk on 
the web. The  a.utomated  malysis tools interface  seamlessly  with the  specifications.  An 
accurate, reusa,ble requirements  model  provides a firm  base for building  members of the 
product, fa,mily. As the  requirement,s  matmure  or  change,  the SCR tables  can  be  updated  and 
the  a.utomatic checks re-run  to give some  assurance of continued  consistency. 

The SCR* toolset, allowed precise  specification of the  parameters,  the  variabilities  t,hat 
t,hey  map  to,  and  their  default value. Twenty-three  variables  and  four new  da,t,a types  were 
defined. The SCR Vxiable  Dictionary  produced a. tabular  description of each variable  with 
fields for the  da.ta  type,  initial  value,  accuracy  required  and  comments.  The  comment field 
was  used to  provide a reference to  the  variability  that  produced  this  parameter of variability, 
to  indicate  the allowa,ble range of values (e.g.,  the  number of delay lines can  range  from 0 
to 8 in current  planning),  and  to  indicate  the  time  the  value is determined  (i.e.,  bound  at 
specification  time,  compile  time  or  run  time). 

The  number of parameters of variability is here  (oddly) less than  the  number of vari- 
a.hilit,ies. This is because  one  variability  relating  to  the  targeting of t,he  interferometer was 
decomposed  into  additional  variabilities  and  pa.rameters of variability  during  t,he  const)ruc- 
tion of the decision  model.  The  higher-level  varkbility waa retained  in  the  model for easier 
traceability  to  the  requirements  documents. However, it  contributed  no  parammeters of vari- 
ability of its  own,  and  could  have  been  deleted  without affecting the model’s  consistency. 

A  prototype SCR” requirements specification wa.s produced for the  delay  line  component 
by  Frank  Humphrey.  The SCR* specification documented  the  delay  line  modes  and  the 
events tha,t caused  transitions  among  them.  The  requirements  specification  demonstrated 
the SCR” capabilities for automatic ana.lysis (e.g.,  parsing,  type-checking, consist,ency checks, 
and  some  completeness  checks)  and  simulation of the  requirements. 

A decision  was made  not  to  maint,ain  the  specification  at  that  point  in  t’ime  since  keeping 
the  commonalities  and  variabilities  precise  and  current was the focus of this  phase.  Rapid 
review  was  more easily  achieved  by refining the  textual  domain  specification  since  structured 
English  was  preferred over formal specifications for  the  review.  In  addition,  uncertainty  as 
to some  projects’  software  requirements had resulted  in  updates  to  the  existing  requirements 
documentation  lagging  behind  the  design aad (in  some  cases)  code.  This  encouraged  deferral 
of a, formal  product  family  requirements specification until  the  components’  requirements ha.d 



1. 
2. 
3 .  
4. 
5. 
6. 
7 .  
8. 
9. 
10. 
11. 
12. 
1 3 .  
14. 

Can’t makch  delay 
Wrong  position 
Wrong  velocity 
Hardware  failure 
Hardware  failure 
Acceleration  too  high 
Invalid  parameter 
Runs off track 
Fringe  tracker to wrong  delay  line 
Interface  failure 
Hardware  failure  mode 
Maint,enance  failure 
Maintenance  failure 
Hardwa.re  failure  mode 

New 
Open 
New 
Beyond  Scope 
Beyond  Scope 
New 
New 
Handled 
Beyond  Scope 
Beyond  Scope 
Beyond  Scope 
Beyond  Scope 
Beyond  Scope 
Hmdled 

Table 1: Summary of Results of Preliminary  Hazard  Analysis 

been  documented. 
The  Specification  Assertion  Dictiona.ry  feature  provided  in SCR* was  used  experimentally 

to  document some dependencies  among  the  variabilities. For example,  an  interferometer  can 
be  either a guide  or  a  science  interferometer. An interferometer  can ha,ve, or  not h v e ,  a, 
feedforward  ta.rget,.  Each of these  statements  captures  a  possible  variability. A dependency 
among  these  variabilities is that a feedforward  target,  can  only  exist if there is a guide 
interferometer. Using the Specification  Assertion  Dictionary,  predica,tes  such  as  this  could 
be  documented  and  checked. 

3. Hazards Analysis 
“Ha.za.rds armlysis is at, t,he  heart of any effective safety  program,”  according t,o  Leveson 
[15]. A Preliminary  Ha,zards  Analysis wa,s performed for the  target  subsystem.  Input to the 
process  included  the  existing  documentation for the delay  line  components  on the various 
interferometers,  the  delay line’s interactions  with  the  system,  presentations,  and  discussions. 
Review of these  yielded a list of hazards  involving  delay lines that might  occur  during 
operations. 

The  hazards were then  analyzed to see if the  existing  product  family  requirement,s  pro- 
vided  mitiga,tion of the hazards.  In  some  cases, a,n a,dditional  safety  requirement  could  be 
derived  and  added to the  product  family  requirements. 

Fourteen  haza,rds were  identified for the  delay line component,. A high-level summary 
of the  hazards is shown in Table 1. The second  column  indicates  the  current  status of the 
hazard.  “Beyond  Scope” in this  column  indicates  tha,t  mitigation of the  hazard is beyond 
the  scope of the  delay  line  software  (;.e.,  either  a  hardware  responsibility  or associa.ted 
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with  other  software).  “Handled”  indicat,es  that  the  existing  product  family  requirement,s 
prevent  or ha.ndle the  hazard.  “New” in the  column shows that an a,dditiona.l software  safety 
requirement, wa,s derived  from  the  hazard a.nalysis and  proposed for inclusion  in the  product 
family  requirements.  “Open”  means  tha.t it is still  unclear  what  the  requirement  should 
be (e.g.,  exactly wha.t, kinds of graceful  degmdation  are  possible  while  still  ret,aining  t,he 
scientific  usefulness of the  instrument). 

Two  hazards were controlled by existing  product  family  requirements.  Four  additiond 
safety  requirements were recommended for addition  to  the  product  family  requirements as a 
result of the  Preliminary  Hazards  Analysis.  Three of these  involved  additional  reasonableness 
checks  on the validity of the  input,  or  t,he  output.  One  involved  the  addition of a, requirement 
for a  watchdog  timer.  Incorporat,ing  the  results of the  preliminary  hazards  analysis  into  t,he 
producd family  approach allowed four  derived  software  safety  reyuirement,s to  be  added t’o 
the  product  family  requirements. 

Some  additional  software  safety  requirements  can  be  derived  from  the PHA but  are 
outside  the scope of the delay  line  software  (e.g.,  a  software  check that  the  commanded 
configuration or cross-strapping is permitted).  Further  analysis  (e.g., a fault  tree  analysis 
[IS])  of the  hazards  can  help  identify  safeguards  against  these  remaining  haza,rds. 

4. Design Evaluation 

The  third piece of this work was to  evaluate  the  design of the  reusable  software  components 
thak were being  developed  against the  product  family  requirements.  Each of the  twenty 
commonality  requirements for the Delay  Line Component was traced  to  the  existing design 
documentat,ion for the  generic  software  and  to  the  design  documentation for the first, interfer- 
omet,er  (a  testbed  version) [8, 91. These  design  documents were prelimina,ry  drafts  containing 
interfxe,  bhckbox (;.e., functional)  descriptions of tasks  triggered by events,  and  some  stat,e 
transition  diagrams  and  sequence  diagrams.  The  results  from  the  design  evaluations  are 
merged  here  since  no  interesting differences among  the  two  design  evaluations  emerged  (a 
tribute  to  the reusa.ble software  component  group’s  work). 

One  result of the design  evaluation was that  three of the  commonalities were not  traceable 
to  the  preliminary design.  Another  three  requirements were implied  in  the  design  (e.g.,  evi- 
dently  embedded in the  algorithms)  but were not  explicitly  addressed.  These  numbers  don’t 
include  the four commonality  requirements  derived  from  the  preliminary  hazards  analysis, 
since  they  were  too low-level to  be  traced  to  this design  document. 

It should  be  noted  that  the  presence of product fa,mily requirements  not  traceable to the 
software  design  does  not  indicat,e a design  error,  since  the  generic  reusable  software is not 
responsible  for  providing all common services.  However, the  mismatches  between  product 
family  requirements  and  software  design  indicate  points at which  a  product  family  design 
would diverge  from  the  reusable  software  component  design.  The  mismatches  may also 
indicate  areas  in which future  customer  expectations of genericity will not  be  served  by  the 
ava.ilable software. 

On  t,he  other  hand,  several  features  present in the design  were  not  included in  t,he  product 
family  requirements,  but  should  have  been. For example,  one  interface,  the  error  stream  tha.t, 
outputs  data  to  ot,her  components of t8he  interferometer, was in  the design but  missing in 
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the  requirements.  In  addition,  two  event-driven  tasks  in  the  design  (e.g.,  commanding  the 
delay line to  a. home  position) were  missing  in the  product  family  requirements.  Finally, 
two  design  features  (e.g.,  clearing a counter) were implied  but  not  made  explicit as required 
capabilit,ies. 

The design was also checked to see that it did not  preclude  any of the thirt,y-five  mriabil- 
ities. Of these, five were out-of-scope of the delay  line  component  design  (e.g.  the  variability 
“The  number of delay lines can  vary” is handled at a  higher level than  the  delay  line  com- 
ponent,  which is instantiated  once for each  delay line. An  additional  three of the  thirty-five 
variabilities were too  detailed  to check against  the  top-level  design  (e.g.,  calibration  require- 
rnents)  and were deferred to  the  detailed  design. 

hlore  interesting is that, one varia,bility, dealing  with  a  range of possible va,lues. may  be 
precluded  by  an  implicit  design  assumption that t8he  rmge is more  limited.  One  other vari- 
ability wa,s violated  by  the  design,  but  investigation  revealed  that  it wa,s the  variability  t,hat 
was in  error.  The  variability  described  the  cross-strapping  (configuation) of the  delay  line 
and  fringe  tracker,  but  assumed a one-to-one  correspondence  between  them,  in  accordance 
with  the  available  requirement  documentation.  The  design stakes that  the  delay  line re- 
ceives targets  from  one  or  more  fringe  tracker  components,  i.e.,  a  one-to-many  relationship, 
a  correct reflection of the  actual  requirements [9]. 

An  additional  eight issues rehting  to  t,he design  or the  preliminary  design docurnent,at,ion 
were  identified during  the  course of the  evaluation of t,he  design  a,ga,inst the  prodl~ct,  family 
req~~irements.  One of these  involved  a  question  regarding  t,he  architlecture of the  component,. 
Others  dealt wit,h inconsistencies in the  description,  information  that,  needed  to  be  included 
in  future  versions,  and  one  interface  misnomer. 

The use of the  product  family  requirements for design  evaluation was  effective in  two 
ways. First,  tracing  the  requirements  to  the  design flagged possible  omissions  in both  the 
reusable  and  the  individual  design.  Second, it improved  and, t,o some  extent,,  mlidated  the 
adequa,cy  and  accuracy of the  current  product  family  requirement,s  preparatory  to  fut,ure, 
more  extensive  development.  The  design evalua,tion  was a two-way street:  the design omitted 
some  features  needed to sat,isfy the  product fa,mily requirements,  and  the  product  family 
reyuirement,s  omitted  some  features,  such as error  handling,  addressed in the design. 

5. Discussion and  Conclusions 

5.1 Modeling Decisions 
In the  course of the specification and  analysis of tjhe  product  family  requirements,  modeling 
decisions  with  safety  implications were made.  The  discussion that follows describes the al- 
ternatives,  the  trade-offs,  the choices that were made,  and-with  hindsight-the  recommended 
choices. 

0 Near-com~nonalities Near-commonalities, in  which the  commonality was true for al- 
most  all  the  systems in the  domain,  frequently  had to be  modeled. As an  example, 
one  near-commonality was  “Receives  Open Loop Target  command [from a. particular 
~omput~er ]” .  However,  one  interferometer will instead  get a,ll its  target,s  from  pre- 
programmed  sequences. Seven of the  nine  commonalities  challenged  by  the  review 
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were true in all but a single member of the  product  family.  This  one  interferometer is 
planned as a  demonstration  project of specific technical  capabilities.  Consequently,  it 
does  not  require  some  features  needed by the  subsequent scientific  missions. The  other 
t3wo of t,he  nine  commonalities  challenged  by  the  review were  also  each true  for all but 
one  product  family  member (a. different one in each  case). 

These  near-commonalities  can  be  represented as variabilities.  This  choice  has  the 
advantage of more  explicitly calling out  the  variations  that  have  to  be  addressed  when 
a  project uses the decision  model to  build  a new system.  Since  unsafe  reuse  often 
involves erroneous  assumptions of commonality, classifying the  near-commonalities as 
variabilities,  with  notations  as  to  their  near-ubiquity, was the  approach  first  ta,ken. 

However, an  alternative is to  introduce  a  parameter of variability  that  enumerat’es  the 
specific interferometers  and  then  represent  a  near-  commonality, call it, NC, that, is true 
for all  except  product fa,mily member i as a, commona,lity of the  form “If not, member 
i, t,hen NC.” Such statements, or  constrained  commonalities,  are  invaria,nts over the 
domain. 

It is anticipated  that how best to model  near-commonalities will be  a  recurring  issue  in 
product  family  evolution.  In  a  business  study of the Sony tape  transport  (Walkman), 
the  anthors  posit  that  the  competitive  advantage is skill in  managing  the  evolution of 
the  product  family [20]. Dike], et, a].,  discuss the risk of “architecture  det,eriora.tion” a.s 
commonalities  erode [4]. Much  has  been  written  about  t,he  need to fully anticipate  the 
expansion of options  in  an  evolving  product, family.  However,  given the  frequency with 
which projects’  scopes  are  reduced  after  development,  begins  in  response to budget  or 
schedule  constraints,  unanticipated  reduced  functionality also occurs. 

The  product  family  requirements  need  to, as much as possible,  anticipate  and  model 
the  range of possible  reductions.  Some of these  reductions  in  functionality will turn 
commonalities  into  near-commonalities.  Whether  represented as variabilities  or  as 
const,rained  commonalities, safe reuse  manda,tes  that  exceptions  to  the  assumption of 
con~monality  be specified. Extensive  cross-referencing  t,hen allows ready  identification 
of the  nea,r-universality of the  requirement,  from  any  point of entry  into  the  requirements 
specification. 

Dependencies  among options 
How to  model  the  dependencies  among  the  variabilities is another  modeling  decision 
that  had  to  be  a,ddressed  in  this  application.  The SPC process mticipates  that ea,ch 
new project  (family  member) will he developed  by  determining  an  appropriate  set 
of choices from  among  the set, of variabilities. An area of concern for safe reuse is 
whether  dependencies exist among  these  variabilities m d ,  if so, how to  represent  them 
and check that  they  are satisfied for each new family  member. 

These  are  constraints  on  the  decision  model of the  form, “If you  choose  option A for 
variabilit,y V1, then you must choose option B for variability V2.” There were  sev- 
eral  such  dependencies to represent for the delay  line. For example,  one variabi1it)y is 
whether  or  not  cross-strapping  (reconfiguration) is possible for this  particuhr  inter- 
ferometer.  Another  variability is whether  or  not  the  interferometer tha,t a  delay  line 



is on  can  shift. However,  disallowing  cross-strapping  compels the value of the  second 
variability. 

There  are several  ways to model  such  dependencies  among  variabilities.  The SPC 
guidebook  suggests  as a heuristic  that decisions, such as mutually  dependent deci- 
sions,  be  grouped  and  that  the logical connections  bettween the decision groups  then 
be  defined.  Ardis  suggests  writing  such  constraints as commonalities,  where t,he com- 
monality is the  required  relationship  between  the  parammeters of variation. To illustra,te 
this, we use a simple  invarimt.  (Expert review later  revealed the alleged  invariant to 
be false  in  some situations,  but  that  inconvenient  trut,h will be  ignored for a moment). 
One  variability is that  the  number of delay  lines  varies. Another  variability is that  
the  number of fringe  trackers varies. A dependency  among  the  variabilities is that   the 
number of delay lines must  equal  the  number of fringe  trackers.  This  constraint, as 
Ardis  points  out, is in  fact a commonality;  all  interferometers in this  product  family 
must, ha.ve the  same  number of delay  lines and  fringe  trackers. 

In this  case,  the  number of fringe  trackers  and  number of delay lines are  parameters of 
variat,ion,  represented  in  the SCR variable  table as monitored  variables.  The  depen- 
dency  among  variabilities was  recorded  in the SCR Specification  Assertion  Dictionary 
as an  assertion  stating  that  the  two  parameters of variation  are  equal. 

0 Hierarchy s f  variabilities 
A modeling  question  that was investigated was whether  the  interferometers  could  be 
organized  into a hierarchy  such  that all the  interferometers  grouped  at a single node 
share  t,he  same \ d u e  for many  parameters of variabilit,y. This  question wa,s, for this 
application,  answered largely in  the  negative,  but  more work is needed to  answer it, for 
larger  product  families. 

A tree was constructed  with  the  top  node  being a,ll interferometers for which there  are 
no  parameters of variability  with a shared  value  among  all  interferometers. (If they all 
had  the  same value, we would  have an  additional  commonality.) At  the  second level of 
the  tree were two  nodes,  spaceborne  interferometers  and  groundbased  interferometers. 
At the  third level of the  tree,  the  spacebased  interferometers were divided  int80 fixed- 
axis collectors and  formattion-flying  collectors,  and so on. 

This  approach was discarded for two  reasons. First,  there were  several  possible  trees, 
with  often no compelling  reason  to select one  tree over another. For example,  perhaps 
the  branch  at  the second level should  be  into  prototypes  and  non-prototypes,  rather 
than  into  spaceborne  and  groundbased.  Both  hierarchies  are  reasonable  alternatives. 
Counting  up  the  number of parameters of variability  with  shared  values  in  each of the 
alternat,ive  trees is possible but not  readily  scalable,  and  lacks  the  intuitive  appeal of 
an a.greed-upon  part,it,ioning. 

Second,  while fa,mily members  at a node  did  share  the  same  value for some  pa,ra.meters 
of variability,  the  hierarchy  did  not  provide  additional  useful  structure  or  insight i n  
this  applica,tion.  This was largely  due  to  the  fact thak the  number of variabilities was 
managea.ble  and  that  most of the  branch  points  in  the  hierarchy were already  known 
to  be key boolean  variables  in the specification (e.g.,  whether  or  not  the  interferometer 
had a fixed axis for its  baseline). 
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For larger  product fa.milies, it ma,y be  that a hierarchy of variabilities  would  be  ben- 
eficial. In  general,  being  able to group  the  variabilities,  much a,s SPC recommends 
grouping  decisions  in the decision  model, would  seem to simplify  reuse  and  simplify 
the  safety  analysis of the  variabilities. However, in  this  application,  the effort did  not 
pay off. 

e Distinguishing  types of variabilities 
Two different types of variabilities  exist for the  interferometer  product,  family.  The 
first type,  and  the  most  common,  describes  variations  among  t,he  interferometers’ a,r- 
chitecture  (e.g.,  what’  a.ctuators  the  delay line controls),  hardware  configuration  (e.g., 
whether  the  baseline is fixed or  variable),  or choice of algorithm  (e.g., for dither cali- 
braation).  This  type of variation is determined  at specification time  and is constant for 
each  member of t,he  product family. 

The second type of mriability  describes  dynamic  variations  among  the  interferometers. 
These  are  variabilities  that, for a particular  member,  can  vary  over  time. An example 
is wha.t kind of target, is selected (e.g., diagnostic  or  feedforward).  Another  example 
is if the  filtering  algorithm  used  depends on some  property of the  data received  [22]. 
These  varia,tions  involve  dependencies of the  required  behavior  on  run-time  scenarios. 

Looking at  examples of other  product  family specifications provided  informally to 
t,he author,  it  appears  that  this  distinction is a  common issue. The  requirements 
specification  for  some  members’  behavior is based  in  part  on  run-time  variations  in  the 
environment. 

Ardis  and Weiss handle t,his  issue  by documenting  the  binding of each  pa,rameter of 
variability. Each parameter is bound  at  specification,  compile,  or  run-time  in  their  ap- 
proach.  This is valuable  information for safety  analyses  since  it  distinguishes  what is 
constant for a member  from  what varies dynamically for that  member. However,  even 
with  the  binding  information,  the  product  family  approach  still  collapses  the  decision 
model  and  the  requirements specification for a particular  member  into a single struc- 
ture.  The  representation  here of both  types of parameters of variability as monitored 
variables  in  the SCR specification  also fails to  adequately  distinguish  the tjwo types of 
varkbility.  More  work,  perhaps  along  the lines of [23], is needed  to  better  represent 
these  aspects of the  domain specification of product  families. 

All four of the  modeling issues described  here  have  safety  implications.  Common va.ri- 
abilities  can  be  modeled  as  constrained  commonalities  (e.g.,  invariants of the  form 
“For  all  interferometers, if the  axis is not  fixed, then  the  interferometer  has  an  ex- 
ternal  metrology  component”).  Dependencies  among  variabilities  can he modeled as 
relationships  among  variabilities  (i.e.,  assertions)  or  as  commonalities,  where  the  terms 
are  parameters of variability.  Variabilities  can  be  grouped  in a hierarchical  structure 
where  the  product,  family  members at a node  share  the va.lues of certain  paramet,ers 
of mriability.  Those varia,bilities  not  known until  run-time  can  be  distinguished  and 
analyzed  separately.  In all these  modeling decisions, accurate  representation of t8he 
limitations  on  the  commonalities  (not  overstating  similarities)  provides  the  strongest 
safeguard  against  the risks of reuse. Ca.pturing  dependencies  among  varkbilities  pro- 
tects  against  inconsistent  systems  and  provides  a  more  complete  requirements  model 

11 



for further  safety  analyses. 

5.2 Results of Review 
Limits t o  a s h r e d  vocabulary. One of the  unexpected  aspects of the review  was that  the 
langua,ge  in the  documents  specifying  the  reusable  software was not  always  familiar to 
the  developers  on  a specific project.  Some of the  product  family  requirements,  written 
using the  vocabulary of the  reusable  software  project, were found  to  be  ambiguous 
during  the review,  since  each  project  had a, slightly different vocabulary. 

The glossary, produced a.s one of the first steps  in  the  process, wa.s some  help,  but 
lacked  precision  in  some  ent>ries. The obvious  solution was to  introduce  some  degree 
of formal specifica.tion [ 5 ] ,  and  this was partially  done with the SCR* specification. 
The  unclear  words  or  phrases were  also rewritten for reviewers into  more  precise  text. 
This was supplemented by the  more  formal SCR description to serve  as  a  reference for 
future  queries. 

0 Review decreased commonalities. The  commonalities  and  variabilities for the Delay 
Line  component were  reviewed by an  engineer with experience  on  interferometers. 
Nine of the  twenty-nine  delay  line  commonalities were deleted  after  review. It turned 
out, to  be very  hard to write  unambiguous  textual  statements  that  all  customers  agree 
will certainly  apply  to  them. All nine of these  deleted  commonalities were generally 
t,rue,  however,  and were added as variabilities. 

This  caused  a  re-evaluation of whether  the  targeted  subsystems  did,  in  fact,  form  a 
product  family.  The  conclusion was that,  based  on the SPC definitions a.s well as 
management  perception,  they did form a product  family.  The  sirnilxities  among  the 
insta.ntiations of these  subsystems  are  both  widespread  and specific, encompassing 
requirement,,  architectural,  and  design  commonalities. 

0 Review increased variabilities Conversely,  after  review  and  update,  the  twenty-three 
variabilities  increased to  thirty-five  and  four  others were  modified by additional  infor- 
mation.  The  increase in variabilities  tended  to  affirm  the  value of the review  from  a 
safety  perspective,  since  these  additional  insights largely  involved  subtle  dist,inctions 
among  interferometer  components,  atypical  interactions,  or  occasional  modes.  Cap- 
turing  these  additional  variabilities  at  the  requiremenh  stage was the  most significant 
xlvantage of the review. 

5.3 Lessons  Learned 
The process of domain definition for the chosen interferometer  components was fairly  straight- 
forward,  and  largely followed the  approach  outlined  in [2 l ,  2, 221. However, the effort experi- 
enced  a of guida,nce for ma,king specific modeling  decisions  involving  near-commonalities 
and  relationships  among  variabilities. 

In  past,  this is due  to  the  limited  number of examples in the  literature.  There is an 
especial  need for more  examples  that  deal  with  both  variable  system c,onfigurations and 
varia.ble inputs t'o that system.  Although  the SPC guidebook  discourages  considering runtime 
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variations  in  the  decision  model,  it is impossible, as  Weiss points  out,  to  describe  the  required 
behavior  without  modeling  those  monitored variables. Additional  examples that are  object- 
oriented would  also be welcome. Finally, as Miller has  pointed  out,  there is a need  for  more 
product,  family  engineering to describe how to model  the  requirements  for  an  entire  family 
of products [17]. 

The  modeling  decisions  that  have  safety  implications,  such as how to  handle  near- 
commonalities,  specifying  dependencies  among  variabilities,  and  hierarchies of variabilities 
within  the  product  family, were the  most  time-consuming  and difficult part of the  process. 
In  general,  thorough  documentation of the  variabilities,  even  at  the cost of minimizing  pos- 
sible  commonalities, was chosen as  the safest  course of action.  Safe  reuse  depends  on  the 
underlying  assumptions of commonality  being  true. 

The  integration of the  hazards  analysis witJh the  product  family  a.pproach  contributed 
four  derived  safety  requiremerh  to  the  product  family  reyuirement,s.  Incorporation of these 
additional  safety  requirements offers a  stmdardized way to  mitrigate  cert’ain  operational 
hazards  in  the  delay  line  component. 

The  product  family  requirements were useful in  evaluation of both  the design of reusable 
software  components  and in the design of a specific delay  line.  Requirements  tracea,bility 
from  the  product  family  to  the  family  members identified both a, variabilit,y a.nd three com- 
mod i t i e s   t ha t  were not fully traceable t,o the  design, as well as errors a.nd omissions i n  
the  product  family  specifications.  The  product  family  approach  supports  reuse;  experience 
applying  it  to  the  interferometer  components  suggests  some ways in which it  can  support 
safe reuse. 
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